(0.016-x)(0.000327)=x^2

Simple and best practice solution for (0.016-x)(0.000327)=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (0.016-x)(0.000327)=x^2 equation:



(0.016-x)(0.000327)=x^2
We move all terms to the left:
(0.016-x)(0.000327)-(x^2)=0
determiningTheFunctionDomain -x^2+(0.016-x)(0.000327)=0
We add all the numbers together, and all the variables
-x^2+(-1x+0.016)(0.000327)=0
We add all the numbers together, and all the variables
-1x^2+(-1x+0.016)(0.000327)=0
We multiply parentheses ..
-1x^2+(-0.000327x+5.232E-6)=0
We add all the numbers together, and all the variables
-1x^2+(-0.000327x+8.2220505264977)=0
We get rid of parentheses
-1x^2-0.000327x+8.2220505264977=0
a = -1; b = -0.000327; c = +8.2220505264977;
Δ = b2-4ac
Δ = -0.0003272-4·(-1)·8.2220505264977
Δ = 32.88820221292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.000327)-\sqrt{32.88820221292}}{2*-1}=\frac{0.000327-\sqrt{32.88820221292}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.000327)+\sqrt{32.88820221292}}{2*-1}=\frac{0.000327+\sqrt{32.88820221292}}{-2} $

See similar equations:

| 15=3n+69 | | -4x+13=-7x+25 | | -12x-29=+23 | | 0=0.5x-6 | | -2x-29=x+5 | | x(8x-8)=-192 | | x^2=0.0004-0.008x | | -12=x/9-14 | | 9(x-12)=45 | | Y=0.5x-6 | | x×25=50 | | -6x+2/2=8 | | 3.5x-75=0 | | 14x^-7x=0 | | 12+5x+×=16-2x+4x | | X/2=x-3/4 | | 3x-7=x+3.X= | | 4+5x=99 | | 1/4(y-8)=1 | | -12=3/4g | | 8z^2=6z | | X^2+6x-14=13 | | 18x2–24x+6=0 | | 5(2x-6)-(x+9)=4 | | 3^x=233 | | 420÷n=70 | | 6x-12x=12x-12x | | 6x-8=5x-7 | | 9y-19=3y-7 | | 9y-19=3y+7 | | 3(3x-1)=0 | | 4x1/13=4/ |

Equations solver categories